FSE PROGRAM SUMMARY DOCUMENT #4

Transfer Function Routine XFRSET

R. E. McFarland

October 1990

NASA

National Aeronautics and
Space Administration

ument: FSE PROGRAM SUMMARY #4, orig. Feb. 14, 1990, final Oct. 29, 1990

Title: Transfer Function Routine XFRSET
Author: R. E. McFarland, NASA

Function: Computation of the state transition matrix and forcing function coefficient
vector for single-input, single-output transfer functions.

Availability: (1) SIMDEV VAX, $DISKIJ[STRIKE]XFRSET.FOR
(2) FSD VAX, SLIBRARY:[STRIKE]JXFRSET.FOR
(3) ADDEV VAX, SDISK :/MCFARLAND.STRIKE]XFRSET.FOR
(4) Author, PC Diskette

Language: FORTRAN, Computer Portable, ANSI Standard

References: (1) State Variables for Engineers, Paul M. DeRusso, Rob J. Roy and
Charles M. Close, Wiley & Sons, Inc., New York, 1967.

(2) On Optimizing Computations for Transition Matrices, R. E. McFarland
and A. B. Rochkind, IEEE Trans. Automatic Control, Vol. AC-23,
No. 3, June 1978.

Summary

This document outlines software for the discrete stare space solution of single-input, sin-
gle-output transfer function given by,

x(s) i

N N-1
u(s) sV + ayns + ..+ 2,5 + 2,

The state space solution of this equation requires the computation of both the transition
matrix and forcing function vector. Once available, the more general problem of ratios
of polynomial transfer functions may be solved. This is permitted because the state
space technique develops all of the "N" individual states of the system.

The state space solution to transfer functions is invariably better than sequential integra-
tion techniques. For example, the state space solution to a stable transfer function is
always stable, whereas the same cannot be said for other techniques.

This document is the first of three in a series. XFRSET, the program discussed in this
document, produces the transition matrix and forcing function vector. If the denomina-
tor coefficients a, are constants, this program need be called only once per simulation.
In the case of nonstationary coefficients, the state space solution technique itself only
makes sense if the coefficients are slowly varying, such as in the case of functions of
altitude or velocity. In this case XFRSET is only called periodically, not every cycle.

The second document in this series concerns the program XFRRUN. It involves consid-
erations of numerator coefficients and "data holds." XFRRUN is used for the transition
of states in real time simulations, and is necessarily called every computer cycle. This
transition requires, of course, the transition matrix and forcing function vector.

-1-

The third document in this series concerns the program XFRBOD. This program is not
intended for real time use. It produces Bode plot information, and should be quite use-
ful in comparing the characteristics of discrete realizations to original continuum transfer

functions.

State Space Form
The cited transfer function arises from the ordinary NP order differential equation,
dNx(t) dN-Ix(t) dN-2x(t) dx(t)
u(t) = N + aN:-t;;—;- + aN‘lm + ... 4+ az—;—t— + a, x(1)

The states for the N*h order system are defined here as the outputs of successive inte~
grations. This permits the equation to be written,

dxy
— = ut) - Ay Xy - Ay XNy T o--e T 3%y - AyX,
dt

where all but the Ntb derivative are contained within the state definition,

de-Ixit)
(n = 1,2,...,N)

din-1
The differential equation then has a convenient matrix form?!,
x(t) = Ax(t) + U(t)
with an implied companion matrix equation (introduced in FSE Program Summary #5),
y(t) = Bx(t)

that will permit the solution to the more general ratio of polynomial Laplace equations:

y(s) DpgeSM + bysMl + L+ bys + by

N N-1
u(s) $ 4 ays + e+ 3,8 + 3

The numerator polynomial is not discussed here. However, it should be noticed that all
of the states are required for the solution to this more general function.

In the matrix form of the differential equation the matrix A is the essential matrix of
the system expressed in canonical form,

0 1 o .. 0
0 0 i ... O
[a] = R
0 0 o ... 1
B -a71) =33 ... —~ay i

and the input is just a scalar,

u(t) = .

i u(t)_

Calling Sequence

CALL XFRSET(T,N,A,NTERM, SETB)

The calling sequence contains the following quantities:

T

N

A()

NTERM

SETB()

The (input) cycle time, in seconds.

The (input) order of the denominator s-plane polynomial (1 < N < 20 is
the current software dimension limitation).

The (input) vector dimensioned N (or greater), consisting of the
denominator coefficients a,. A(N+1) is not included; it is always assumed

unity.

An XFRSET scalar output, available to the user for an examination of
series convergence properties. (See Reference 2).

A buffer unique to the denominator of dimension of at least N2 + N + 1.
The first N+1 cells of this buffer contain the forcing function coefficients
and the remaining N2 cells contain the transition matrix. This output
buffer, explained below, is computed by XFRSET. It is a function of both
the cycle time T and the coefficients a_.

The subroutine XFRSET concerns itself only with the denominator polynomial. The
cycle time (T), the order of the denominator polynomial (N), and the specified denomi-
nator coefficients a; (n = 1, 2, ... N) are used to create the buffer SETB, which must be
dimensioned at least N? + N + 1 in the calling program. Note that it generally takes N

-3-

+ 1 coefficients to express an N*' order polynomial - but because "N" is specified the
leading coefficient ay,, is always assumed unity, and is not included in the A() dimen-
sion requirements.

XFRSET is called initially, and for nonstationary transfer functions may be called peri-
odically, or whenever the denominator coefficients change "significantly.” Although
"significantly” is not a well defined term in this context, the slowly-varying coefficient
hypothesis would have it that coefficient frequency content be much lower than the
input/output frequency content. Also, engineering judgement dictates that discrete
changes in the location of the poles should not excite the transfer function. Hence, for
nonstationary transfer functions some care should be exercised in the selection of the
period of calling XFRSET.

If the call to XFRSET must be made every cycle, then it is doubtful that the transfer
function is itself amenable to a Laplace representation. Also, calls to XFRSET are
computationally expensive relative to the required XFRRUN calls. The penalty for
redundant XFRSET calls is computational workload.

The Buffer SETB

As created by a call to XFRSET, the buffer SETB contains the forcing function coeffi-
cients in a vector [A],

[A]-—- .

L >‘N+1 .

which are contained in the first N + 1 cells of SETB. The transition matrix [['] com-
prises the remaining N? cells of SETB (for a total of N2 + N + 1):

Y1 Y12 7Yis ¢ TN
Y21 Y22 Tz °c+ TaN
[P] = Ts1 7.'32 '.Yss cee T3N

® ® [®

| TN1 TN2 TNs °**°* INN

The above vector and matrix are sufficient for the complete solution to the state variable
equations, regardless of the selected data hold. Hence, SETB contains the generalized
coefficients for the discrete realization of a linear transfer function. These coefficients
are computed to the accuracy of the computer word length.

XFRSET's buffer SETB is required by subroutine XFRRUN, which performs the actual

transition of the states during real-time simulation. This buffer is also required by
subroutine XFRBOD in a non-real time analysis of the performance characteristics

-4~

of the discrete realization. As a preview of the discrete operations, three different
data-hold formulations are presented below. This preview is provided to show the
general nature of XFRSET outputs; they may be used for data-hold formulations beyond
those provided by XFRRUN.

Transition

"Transition" consists of the discrete operation of determining the numerical output(s) of a
transfer function, given the input. This output may be computed as applicable to the
next time point (advancing form), or applicable at the same time as the input (concur-
rent form). This determination is made when a "data hold" is selected, i. e.. the charac-
teristics of the input data between the sampling instants is specified. The state transition
technique ‘requires that a data hold assumption be made. Three separate data holds are
handled by XFRRUN - but this does not preclude the possibility of additional data

holds.

The three data holds are presented in Fig. 1. This figure shows the consequences of
sampling only ten times per cycle of input data, for each of the data holds.

Zero-Order Hold

If the zero-order data hold is selected, the input data is assumed to be constant during
the (new) interval, so that the output point of applicability is the end of the interval
(advance). If, for some reason, the output point were required to be concurrent with the
input point, and the zero-order hold formulation was absolutely required, then the input
itself would have to be delayed by one cycle. In practice, the zero order hold has appli-
cation for random inputs, such as in turbulence models, and in cases where the output
advance is required, but the first order data hold is numerically unstable.

For step inputs the zero-order data hold provides exact answers. In this unusual case the

“data hold assumption just happens to perfectly describe the input functionality.
However, this rarely occurs in practice. Hence, the utility of the zero-order data hold
has become exaggerated. In fact, for much more general inputs that are representative
samples of continuum behavior, the zero-order hold formulation actually advances the
output by half of a cycle, rather than a full cycle. This can lead to some unexpected
results unless care is taken.

First-Order Hold

If the first-order data hold is selected, the input data is assumed to have straight-line
behavior. The current and previous input data values are used to project this linear
behavior during the new interval, in a process usually called "extrapolation.” This then
produces an output that is applicable at the end of the interval (advance), similar to that
of the zero-order data hold. In real-time simulation work an advanced output is
required only in certain internal feedback paths (with nonlinearities) and occasionally in
algebraic loops. Most notably, however, the *first integration” in the kinematic module
STRIKE (or SMART) uses the first-order data hold. This process results in the
Adams-Bashforth algorithm, which advances the vehicle translational and angular
velocities. This very fact generally relieves Ames programmers from having to consider
*advancing forms® when they code the individual modules in an aircraft simulation. The
outputs (all forces and moments) delivered to the kinematic module should be concurrent

-5-

20

awiy

00

ploy J4onbupigg

?@

SA10H Vivag — | "biy

PIOH 18pJ() ©J87

= (s)°H
15=9 — |

sesuodsay

with the input point (pilot input A/D), and this is not possible using a first-order data
hold, unless the input data values are intentionally delayed by one cycle. A silly

operation.

Triangular Hold

If the triangular data hold is selected, the input data is also assumed to be a straight line
during the interval, but the input data is not extrapolated, it is interpolated. This
produces a significant difference from the first-order data hold. The output is not
applicable at the end of the interval, it is applicable at the beginning of the interval, /.
e., the same time point as the most recent input {(concurrent). The triangular data hold is
thus the algorithm of choice. If it is not used, then some compelling reason must exist.

If an advance is required, the first-order data hold usually performs the job better than
the zero-order data hold. However, it amplifies the higher frequency components more,
and this may adversely affect the gain margin in certain feedback paths. If an advance
is not required, which is the usual case when internal feedback paths are not of concern,
then the gain and phase characteristics of the triangular hold are wonderful.

The Bilinear transform technique, sometimes called "Tustin,” is not a state space solution
technique (it is an algebraic substitution technique), and is therefore not discussed here.
Although it is a "concurrent form" similar to the triangular hold, it delivers inferior per-
formance because of frequency warping. Whenever possible, it should be avoided.

Transition thus depends upon the selected data hold (here called ITHOLD), which is the
selected assumption concerning the behavior of the input data between the sampling
points. The difference between an "advancing” data hold and a "concurrent™ data hold
should be well understood.

Transition is not performed by XFRSET, it is performed by XFRRUN. Alternately, it
may be performed by the user’s own code. The transition process is here previewed in
order to give insight into the procedure, and to show the importance of the transition
matrix and forcing function vector.

For simulation models at Ames, the owpurs of any aero, control or propulsion module
should be concurrent with the input point, or beginning of the cycle. This is because
these outputs are generally proportional to forces or moments, which are accumulated by
the kinematic module and assumed to be coincident with the pilot input. At the end of
the cycle the kinematic module combines these individual module outputs, applicable at
ty, and integrates them to velocities and positions, applicable at t,,, or the beginning of
the next interval (or end of the current interval). Hence, advances in module outputs,
wherein transfer functions usually reside, are erroneous. Gross errors in the time
subscript, sometimes called "temporal index" problems, produce phase errors up to 180°.

Although advances in toral module outputs are thus almost invariably undesirable, this
does not mean that advancing options are not useful. Indeed, internal to various
modules they are often required, especially in feedback paths. As will be shown in FSE
Summary Document #5, this sometimes requires dual XFRRUN calls, but never requires
additional XFRSET calls.

The three basic data hold options used at Ames are (1) IHOLD = 0, the zero-order data
hold, which advances the output by one cycle, (2) IHOLD = I, the first-order data hold,
which also advances the output by one cycle, and (3) IHOLD = 2, the triangular data

-6-

hold, which delivers an output that is concurrent with the input. Whenever possible, the
triangular hold should be used (see Fig. 1).

These subjects are discussed further in FSE Program Summaries #5 and #6.

The transition equations for the three different data hold assumptions are given as fol-
lows. Here the temporal subscript "k" implies "t,, the "current input point.”

IHOLD = 0 (Zero Order Hold, Advancing)

. - - - ~ -
Xl xl)2
X X by
I N | T B R Y
X X X

L N dL L N | AN+

Note that the output temporal subscript "k+1" is in advance of the input subscript "k".

IHOLD = 1 (First Order Hold, Advancing)

o - o - -

Xl xl)2)1
X X A A -
2 [-] 2 3 2 [uk uk-l]
= L) + L3 u + - ——
. . k . T
X X A by
L N dys1 L. N Jy L N+1 L N J

Note that the output temporal subscript "k+1" is in advance of the most-recent input
subscript "k".

IHQLD = 2 (Triangular Hold, Concurrent)

X, X, A, A,
X2 X2 s As [‘-‘x"’um)
S 1 | U PR I U R M
. . k-1 . T
X X A
L N Jy L N Jy L. “N+1 J . "N

Note that (only) in this formulation the output temporal subscript "k" is the same as the
most-recent input subscript (concurrent).

-7-

Newton-Gregory Formulations

The above three data-hold formulations may be checked by comparisons with results
obtained using the pertinent Newton-Gregory collating polynomials. These formulations
are given by,

f,(2) = Z{(: ':wT) f(s)} Z.0.H., Advancing

f2) = Z{(! ':ﬂ)2(: ;Ts) f(s)} F.O.H., Advancing

£, = Z{(: ':Q'T)2(_e;T) f(s)} T.0.H., Concurrent
First Order Example

If the Laplace function is given by,

1
s+a

fs) =

the Newton-Gregory polynomials produce for the different data holds,

i- e-a?
f,(2) = ————

a(z - e2T)

aT + (aT - 1)1 - e®T) + (1 - aT - e»T)z"!
fi(z2) =

a?T(z - e*T)

aT -1 +eT 41 - (1 +aT)e*Tz"?

f,(2) =

a?T(l - e2Tz"1)
and substituting these expressions into the IHOLD formulations produces,
Ty o= e
A, = (eT+aT - 1)/a®
X, = (1-e*T)ya
regardless of the data hold (IHOLD is not input to XFRSET). Numerically, these quan-

tities are delivered in the buffer SETB by a call to subroutine XFRSET (note that in this
case N? + N + 1 = 3). XFRSET is a smart routine. As the product "aT" vanishes,

-8-

XFRSET produces the proper limits to these expressions,
Y1, * I -aT

X, & 4T?

X, & T -iaT)

Hence, for f(s) = 1/s the zero, first, and triangular data hold formulations produce the
Euler, Adams-Bashforth, and triangular integration algorithms, respectively. You should
note that only in this single example does the Tustin formulation reduce to any of these
state-space formulations (triangular hold).

Transfer Function Applicability

The quantity NTERM may be used as a check in determining the applicability of
arbitrary transfer functions to real-time simulation in terms of a required value for "T"
with respect to the coefficients a_. This is discussed in ref. 2, where NTERM is
identified as closely related to the "average discrete real-pole radius.”" The quantity is a
measurement of both series convergence, and applicability. If NTERM is very large
then it is certain that at least one pole in the transfer function is too large for the

required cycle time.

An example is provided in Fig. 2 using a general second-order model. It should be
noticed that the damping range () selected convolutes the formulation through five
distinct z-transform solution regions. XFRSET has no problem with this. Bounded as
well as unbounded functionalities are handled; the workload only increases as the average
discrete real-pole radius increases. This is defined in ref. 1 as being the approximate

function of the real poles,
X = I|Re(p)|T

for a wide class of functions, where "smaller poles tend to accelerate convergence." It is
also noted that "the larger the order of the system, the more rapid the convergence.” In
Fig. 2 it is seen that NTERM in the region of about 15 should raise an alarm for
second-order systems. In practice, a limit is placed on the size of X in order to observe
the system frequency content {considering the transition interval T used). A large value
for NTERM informs you that convergence is slow. Either select a smaller value for T
(sometimes possible using multirate techniques), or purge the transfer function of
unrealistic poles.

Calls to XFRSET are computationally expensive. Hence, the workload should be
appropriately distributed in a real-time simulation model. For example, if there are two
transfer functions with different nonstationary denominators in a model, the calls to
XFRSET should alternate. In this fashion the penalty of only one call accrues to any
given real time cycle. This technique is possible, of course, because the coefficients
should never be so dynamic that they require an XFRSET call every cycle.

The quantity NTERM (and hence the time penalty) is a function of various parameters.
A very slow class of non-real-time computers has been used to help quantify this
penalty, and demonstrate the futility of simulating unrealistic transfer functions. This is
shown in Fig. 3, with parameters relevant to an IBM/AT class computer. For the second
order system (N = 2) discussed above, we see that for typical systems (0 < { < 1), where

-9

04

M DAN

® /) Kousnbaig ysinbAn ay) jo
uonjyodoug 0 so Aousnbaug panjoN padwopul

th

20+ ST 4 S

L

b3 i) 4, L

i
o

()}

-Gl

- Q¢

-G

- 0¢

- GE

|9PON 48P0 —puooag ‘@ousabiaauol) |ISHAX —

14

b4

8} 4

SWH3IIN

Fig. 3 — XFRSET Timing on an IBM/AT Computer

Ty T /A A R L R SR L SN S SN SN S A U SR A S A R A M SR R

T ey

'y} Q ['e’ « [ty [} n
M)) o o~ - -

o9sw — awil] padinbay

NTERMS

the undamped natural frequency is usually less than about 20% of the Nyquist
frequency, an NTERM of less than about 7 is generally produced, and on an AT
computer this would require about 6 msec. If the system were squared (N = 4), an AT
computer would require about 10 msec. Note that the time penalty does not increase
linearly with the order of the transfer function. Subroutine XFRSET /oves high order

systems.

Of course, our real-time computers are more than an order of magnitude faster than the
speed of an AT computer. Hence, the data of Fig. 3 must include some scale factor if it
is used to estimate timing. Also, the data of Fig. 2 includes some very unrealistic
transfer functions, and values for NTERM on the order of 20 should never be

anticipated.

Concluding Remarks

The program XFRSET produces the state transition matrix and the forcing function
vector in a form that may be applied to any order of data hold. For real-time
simulation it is best to restrict transfer functions to just those three data-hold

formulations mentioned here.

For high-order transfer functions the determination of their z-transform equivalents
involves a formidable amount of algebra. For this reason the XFRSET software is very

valuable.

Whenever transfer functions can be combined, they should be combined, and a state
space technique should be applied. Algebraic substitution techniques such as "Tustin"
defeat this procedure and produce inferior results. If this latter bilinear technique is
used in XFRRUN (ie., IHOLD=3), then XFRSET should not be called; also, a state
space solution is not produced.

For a constant coefficient case XFRSET need be only called once. For the
slowly-varying coefficient case XFRSET should be called periodically.

Once created by a call to XFRSET, the output buffer SETB may be used by any number
of transfer functions having the same denominator coefficients a_.

Real-time transition is best handled by subroutine XFRRUN, outlined in FSE Program
Summary #5. However, the user is invited to experiment with alternate transition
schemes, using the XFRSET output buffer SETB.

FSE Program Summary #6 explains subroutine XFRBOD. This routine produces Bode
plot data for transfer functions, as used in real-time simulation with the above
techniques. Baseline (continuum) data is also generated.

-10-

c
SUBROUTINE XFRSET(DT,N,A,NTERM,SETB)

c

C R.EMCFARLAND -NASA- JULY 18, 1989

C VERSION 1.0, OCT. 29, 1990

C 'STOP' REMOVED, REPLACED BY *RETURN".

c

C ROUTINE LIKE -FACT- EXCEPT DIFFERENT SETB DEFINITIONS,

C PERMITTING ZERO, FIRST OR TRIANGULAR HOLD TRANSITION...

¢
C USES SUBROUTINE BTYPE FOR ITS ERROR MESSAGES.

c

C INPUTS:

o DT (CYCLE TIME IN SECONDS)

c N (ORDER OF THE DENOMINATOR POLYNOMIAL IN)
c A (DIMENSION AT LEAST N)

c

€ OUTPUTS:

c NTERM (A MEASURE OF CONVERGENCE SPEED)

c SETB (DIMENSION N**2 + N + 1 AT LEAST)

c

C XFRSET SETS UP THE TRANSITION MATRIX AND

C FORCING FUNCTION VECTOR WHICH WILL BE REQUIRED TO SOLVE FOR
C THE TRANSITION OF X TO U IN REAL TIME, AS IN:

C

IR EEREEREREEIRE I I

S**N + A(N)*S**(N-1) + ... + A{2)*S + A(1) *
»

N EEERENEENEREENEEEEEEEI NN

e IR e RN o BRI e R e B o B B e BN ¢
#
>

DIMENSION A(1),SETB(1)

c

C MAXIMUM INTERNAL DIMENSIONS. GREATER DIMENSIONS MAY BE USED.
DIMENSION HP(20),P(20),8(20),BB(20)

c

C DOUBLE PRECISION HAS BEEN MINIMIZED.
DOUBLE PRECISION P 8,E,F,GSUM

c

Cﬁt!#‘Q##*‘*"i“*t't“t.###.?“t‘t’ttt”‘#t'#Qtt“ﬁ““*lﬁ“**#t**‘!"

c““tl‘ttt*i"“t'l‘t‘ll**""""*"“‘#t“*.‘*##‘t'*‘t#“'##‘#“."‘

C

C FUNCTIONS ONLY OF THE DENOMINATOR POLYNOMIAL:
c

C BUFFER DEFINITIONS: (SIZE=N**2 + N+ 1)

C

-XFRSET 1~

C SETB(1) C1 FIRST ELEMENT, FORCING FUNCTION VECTOR
C SETB(2) C2 SECOND ELEMENT, FORCING FUNCTION VECTOR
CSETB(N+1) CN+1 N +1 ELEMENT, FORCING FUNCTION VECTOR
o
CSETB(N+2) F(1,1) TRANSITION MATRIX
CSETB(N+3) F(1,2) TRANSITION MATRIX
C SETB(I+1+J*N) F(3,]) TRANSITION MATRIX
C SETB(N**2+N+1) F(N,N) TRANSITION MATRIX
c
c
C SEE: "ON OPTIMIZING COMPUTATIONS FOR TRANSITION MATRICES®
C IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-28,
C NO.s, JUNE 1978.
c
C AND: "FSE PROGRAM SUMMARY DOCUMENT #4°, XFFSET, FEB. 1590
c
C AND: "FSE PROGRAM SUMMARY DOCUMENT #5", XFFRUN, FEB. 1990
o
c
C NTERM - A MEASURE OF THE SPEED OF SERIES CONVERGENCE,
c (AN INTERNAL VARIABLE). SEE IEEE DOC IF INTERESTED.
c
C SIX DECIMAL DIGITS ACCURACY IN DETERMINING PARAMETERS.
DATA PFM5/0.000005/
c
C TRANSFER FUNCTION RESTRICTION (ACCORDING TO DIMENSION STATEMENTS)
IF(N.LE.0) RETURN
IF(N.GT.20) THEN
CALL BTYPE(40,’ XFRSET: ARBITRARY LIMIT OF 20TH ORDER °)
RETURN
END IF
C N = 1 SPECIAL CASE (AND MATHEMATICAL LIMIT OF SINGLE INTEGRATION)
C SETB(8) = PHI(1,1)
IF(N.GT.1) GO TO 500
CCHECK = A{1)*DT
IF(ABS(CCHECK).GT.1.0E-6) THEN
SETB(3) = EXP(-CCHECK)
SETB(2) = (1.0 - SETB(8))/A(1)
SETB(1) = (DT - SETB(2))/A(1)
ELSE
SETB(3) = 19 - CCHECK
SETB(2) = DT*(1.0 - 0.5*CCHECK)
SETB(1) = DT**2%0.5
END IF
RETURN
500 CONTINUE
c
C COMPUTE LEADING FACTORIAL TERMS FOR EACH ELEMENT OF

-XFRSET 2-

C FIRST COLUMN OF TRANSITION MATRIX.

HL = 1.0
XFACT = 1.0
NPi=N+1
C
DO 1000 I=1,N
NPIMI =NP1-1
FACTOR = HL/XFACT
SETB(I+NP1) = FACTOR
HP(I) = HL
HL = HL*DT
XFACT = XFACT*I
BB(NP1IMI) = - HL*A(NPIMI)
1000 CONTINUE
C

C AT THIS POINT, FACTOR = DT**(N-1)/(N-1)! TO BE USED BELOW.
C
C OBTAIN KSTART.
DO 1100 KSTART=1,N
IF(A(KSTART).NE.0.0) GO TO 1200
1100 CONTINUE
C
C AT THIS POINT ALL COEFFICIENTS ARE ZERO AND SERIES IS ALSO ZERO.
C HENCE, SPECIAL FORMULA FOR FORCING VECTOR.
NTERM =0
KSTART = NP1
GO TO 1800
C
C WILL FIND VALUE FOR NTERM BELOW.
1200 CONTINUE
C
C INITIALIZE SERIES SUM.
DO 1300 I=KSTARTN
P(I) = BB(I)/XFACT
s(1) =P(I)
1300 CONTINUE
C
C SUM SERIES. 100 TERM LIMIT BASED UPON EITHER REAL POLES TIMES
C CYCLE TIME GREATER THAN ABOUT 30, OR FREQUENCY MANY TIMES THE
C NYQUIST FREQUENCY.
C
DO 1500 RTERM = 1,100
RATIO = N + NTERM
E =008
IGO=0
DO 1400] = KSTART,N
F = (B + BB(J)*P(N))/RATIO
E =P{J)
P(I)=F
$(N=8(3)+F
IF(ABS(F).LE.PFM5*ABS(S(J))) GO TO 1400

-XFRSET 3~

IGO=1
1400 CONTINUE
C
C CALCULATING PSISUB J
IF{(IGO.EQ.0) GO TO 1600
1500 CONTINUE
C
CALL BTYPE(40," XFRSET: RETHINK YOUR TRANSFER FUNCTION’)
RETURN
o]
C USING A CYCLE TIME OF 0.1, FOR EXAMPLE, THE TRANSFER FUNCTION
C 1/(0.1°8 + 1) REQUIRES NTERM = 3
C
1600 CONTINUE
C
C ADD IN LEADING TERM.
DO 1700 I=KSTART,N
8(I) = 8(I) * HP(I)
C FIRST COLUMN OF TRANSITION MATRIX
INP1 =1+ NP1
SETB(INP1) = SETB(INP1) + 8(I)
1700 CONTINUE

C
C COMPUTE REMAINING ROWS OF STATE TRANSITION MATRIX.
C STORE FORCING VECTOR COMPONENTS CONTAINING ELEMENTS OF SAME.

1800 CONTINUE

C
IF(N.LT.2) GO TO 2000

DO 1800 J = 2N

Nl =N*]J-N-1

NIP1 =NJ+N

DUM = SETB(NIP1 + 2)

SETB(J +1) =DUM

SETB(NJP1 + 3) = - A(1)*DUM
C

DO 1900 I = 2N
SETB(NJP1 + 1 + 3) = SETB(NJ + 1 + 1) - A(I)*DUM
1900 CONTINUE
C
2000 CONTINUE
C
C FORCING VECTORS COMPUTED.
IF(KSTART.LE.N) GO TO 2100
c
C ALL COEFFICIENTS ARE ZERO. SPECIAL FORMULAS FOR FORCING VECTOR.
SETB(2) = FACTOR*DT/N
SETB(1) = SETB(2)*DT/NP1
RETURN
C
C NOT ALL COEFFICIENTS ARE ZERO. REGULAR FORMULAS.

2100 CONTINUE

~-XFRSET 4-

APIVOT = - 1.0/A(KSTART)
SETB(2) = APIVOT*S(KSTART)
C
C FORCING VECTOR
IP = KSTART -1
IPI = KSTART +1
IF(IPL.GT.N) GO TO 2200
KSUM = IPI
GSIG = S(IPI)
GO TO 2300
C
2200 CONTINUE
KSUM =N
FACTOR = FACTOR*DT/KSTART
GSIG = SETB(NP1 - IP) - FACTOR
C
2300 CONTINUE
GSUM = 0.0
IF(IP1.GT.KSUM) GO TO 2500
C
DO 2400 K = IPLKSUM
GSUM = GSUM + A(K)*SETB(K - IP)
2400 CONTINUE
C
2500 CONTINUE
SETB(1) = APIVOT*(GSIG + GSUM)
RETURN
END

-XFRSET 5-

